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General (:'LO, "‘5'?777
The concept of normal modes of vibration has been extended by %‘W 44

Rosenbergl to nonlinear oscillations of any finite number of degrees of

freedom. The writer has pointed out? that certain nonlinear continuous

systems, characterized by the separability of the space and time variables,

vibrate in normal modes in the sense defined by Rosenberg. In particular,

the writer has shown that a simply-supported beam rigidly held at its ends

is capable of vibrating in normal modes.
The motion of beams with axial tension is governed by the differential

equation

94w 82W Bzw - (1)
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with

in which N is the axial force, w is the lateral deflection, a the length of the
beam, A its cross-sectional area, E is Young's Modulus, I is the moment of
inertia, and t is time.

Inthe case of a simply suppérted beam, a sine function in the space
coordinaitie effecﬁvely separates the variables in (1), as is well known, and
normal modes emerge very simply. As far as the writer is aware, this

separability is confined to the simply supported case.



It is certainly very surprising that normal modes cannot be readily
defined for nonsimply supported beams. It is difficult to accept the con-
clusion that the concept breaks down completely when the boundary con-
ditions are changed. Consequently, it becomes necessary to generalize
this concept so as to take into account physical systems in which variables
are not separable.

While the possibility of such theoretical extension exists, it is
proposed to investigate first, by an approximate numerical procedure
as well as experimentally, whether such normal modes, conceived of
intuitively, are stable.

Time Dependent Normal Modes

If one recalls the definition of normal modes in linear oscillations,
it is evident that they can occur only under certain, quite restrictive, initial
conditions. Thus, a beam will not vibrate in a normal mode unless it is
started exactly in the appropriate mode, which, in turn, depends on its
boundary conditions. A beam which is given an arbitrary starting shape will
not vibrate in a normal mode. While the concept itself may be of considerable
practical value, the point made here is that normal modes require restrictive
conditions for their actual occurrence.

Returning now to the system governed by equations (1), the simply
supported case (where the variables separate), is characterized by the
fact that the mode shape itself is independent of time being at all times

a sine function. In the case of other boundary conditions, since variables



do not separate, one must suppose that the normal modes are a function

of time, the mode shape altering continuously as the beam vibrates.
However, if normal modes exist, they must be stable; that is, the beam
must return to a certain shape periodically. If it does not, then the normal
modes are unstable.

Numerical Procedure

In order to investigate analytically whether such time dependent
normal modes are stable, one must appeal to physical intuition for cer-
tain basic assumptions. We suppose first that the axial tension N in (1)
does not vary very rapidly so that it may be assumed to remain constant
for sufficiently small intervals of time. If N is constant in the first of
equations (1), it is linear and normal modes exist, together with a denum-
erably infinite sequence of discrete frequencies for any set of suitable
boundary conditions. At the end of the time interval, one may use the
second of equations (1) to calculate a new membrane tension and a new set
of normal modes and natural frequencies. Physical intuition suggests that the
first normal mode (that is, the normal mode corresponding to the lowest
frequency) of the first time interval will merge into the first normal of
the second time interval and so on for all subsequent time intervals and
other normal modes. This is a fundamental assumption of the investigation.

Since normal modes depend on the initial conditions, one must

specify such conditions consistently. Assuming that the beam is initially



displaced with zero initial velocity, the normal modes are completely
defined by the tension N.

For a constant N, one may assume that

w = X(x)exp(ipt) (2)
where X is a function of x alone.

The initial condition is specified by the tension parameter

a
2
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in which f*, the amplitude of the displacement, is unknown to begin with,
A is the cross-sectional area and prime denotes differentiation with
respect to x.

For purposes of computation, it is convenient to write the relation

(3) in the form

with
N = N/N*
£ = f%/h
a
b = af(X')de

0
where N* is the ""buckling load' of the beam treated as a column and h is

any convenient dimension of the beam cross section, such as its depth.



If we let

a = [H+(U2+H2)1/2]1/2
ﬁ‘=[(u2+uz)l/2-p]1/2 (6)
where
4_2
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then it may be shown by elementary procedures that for beams clamped
at (x = 0, a) and for beams clamped at x = 0 and simply supported at x = a,

the normal modes X(x) are given by

cosh%{- - cos-—ﬁ—a>E B Sinh%}f— -a sinﬁg—
X(x) = + (7)
cosha - cos B a sin - B sinh a

The frequency equations for the two cases are, however, different.

For the clamped-clamped beam, the equation is

u(l - coshacosf)+psinhasinp =0 (8)
and for the clamped simply-supported beam, the frequency equation is

a sin B cosha - B cos P sinha =0 (9)

For a given p, a, B and u must satisfy equations (6) and (8) or (9).
The values of a, B and u may thus always be obtained by trial and error.
With a and B known, the mode shape is completely defined by (7). It is
to be noted, however, there are an infinity of the set (a, ,u) for a given
p. We are, for the present, interested only in the set corresponding to the
lowest value of u.

Consider any time interval extending from r&Ato (r + 1)&, where
Ais a suitably small quantity. At time r4, the displacement and velocity

are given by:
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sy cos (P )+ g ., sin(p__ 2] (10)
v = =

W :
h Xp-1Pr-1 ['fr-l Sin (pr-lA) + 8r-) cos (pr-lA)] (11)
The tension parameter is

2
Ah . 2
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Knowing My, One may calculate Qs [31., P and Xr‘

(12)

The displacement
velocity and membrane tension for (r&)<t<{r + 1)A are then given by
w
h

= X (f cos pypt + gy sin pyt)

(13)
W .
v = & = Xypr(-frsin pyt + gr cos prt) (14)
_AR? o

(15)

However, the displacement, velocity and membrane force att =0

as given by (13),(15) and (16) must be the same as those given by (10), (11)
and (12) and so

Xy-1 [fr-l cos (Pr-lA) t gr-1 sin (Pr-lA)] = Xpfy

(16)
Xp-1Pp-1l-f 1 sin(pp18) + g cos (pp.18)] = X,p.g, (17)
[£,_, cos (p,._ &)+ g _sin(p, D% | = %, (18)
From (18), we get
f. =

br-1
[fr-l cos (py_ &) + gr- sin pr-lA] (

1/2
b ) (19)
r



From (15) and (19)

=l ()

Substitution in (16) yields

1/2

1/2
[-fr_ p sin(p._;&) + g, cos (pr_lA)] (%I;;_l.) (20)

The relations (19) and (20) thus give f{. and g, in terms of all the known
quantities and enable one to proceed to the next step. It is important in
this computation that the time steps be taken as small as practical as
otherwise the result will indicate an unstable motion even when it is
essentially stable.

Although when the beam is simply supported, an exact solution in
terms of elliptic functions can be obtained, it is of interest to apply the
numerical method to this case also to afford a comparison with the solu-
tions for other boundary conditions.

Figure 1 shows a plot of the center deflection ratio (w/h) against the
velocity/frequency ratio (v/h)/p, the so called phase plane. If the motion
considered is stable and periodic, a closed curve should result.

The parameters chosen in the computations were those of the
steel specimens to be used in the experimental work in progress and are
as follows:

length = 30 in. depth = 0.25 in., width = 0. 30 in.
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The resulting nondimensional parameters are

A, = (El/a%p)}/? = 19.456

A

1]

, = (Ah%/41) =3
The parameter X\ was taken as 2.

In Figure 1 it may benoted that all the curves are essentially
closed, although not exactly so. Extended computations, with various
values of the time interval show, however, that the gap is a function of
the time interval and decreases as the interval decreases. In the compu-
tations the quantity (p4) was taken as .005 and thus over 1000 intervals
were required to complete 2w radians. A further decrease in the time
interval seemed unwarranted, especially as it has been established that
any slight gap at closure was an approximation error.

We conclude therefore that the motion is stable and periodic for
all boundary conditions, and that is meaningful to speak of a time-

dependent normal mode.

Period of "Fundamental'" Mode

The nonlinear period T of vibration for the '"fundamental'' mode

may be written in the following form

T = 4K/p (21)
5 2 .\1/2

p =a Al (l + VAZThO ) (22)
2 2
1 fo fo

m = > VAZ? (l + VAZ—}IZ (23)
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in which K is the complete elliptic integral of the first kind, p is the
frequency, fis the initial displacement and m is the parameter of the
Jacobian elliptic functions. The parameters a and v have the following

values for the various boundary conditions

(a) Simply supported
a =1m,v =1
{b) Clamped-clamped

a =4.73, v = .3077
(c) Clamped-simply supported
| a = 3.927, v = 1.6697

Formulas (21), (22) and (23) are theoretically exact only for
the simply supported case. For the other two cases they are approximate,
having been arrived at by applying a Galerkin approximation to the
differential equation3.

Table 1 gives a comparison of the fundamental period as arrived at
by formula (21) and by the numerical procedure outlined in this report.
It will be noted that the agreement is close for the simply supported case

only. For the other boundary conditions, formula (2 1) underestimates

the period as might be expected.



TABLE 1

FUNDAMENTAL PERIOD T (IN SECS)

SS CC CS
Formula (21) . 02088 .00860 .00878
.02080 . 00934 .01348

Num. Proc.
SS = Simply supported

clamped-clamped

1}

CC
clamped-simply supported

CS

11
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STATUS OF EXPERIMENTAL WORK

A facility for experimentally determining the vibration character-
istic of beams with various boundary conditions by the Moire method
has been assembled, and preliminary static calibration tests have been
completed.

Comparative grid tests were made with lines of 0.05 inch, 0.1 inch
and 0. 125 inch widths to determine the preferable grid system for optimum
definition of the Moire” patterns. Results favored the 0. l-inch line and a
grid with an overall size of 20 inches by 60 inches, mounted on 15-gage
steel plate, will be used to conduct future tests.

Tests thus far were made with a high strength steel beam of 22
inches cantilevered length and 0. 250 inch by 0. 200 inch cross section.

Two beams of different configurations have been designed--one with both
ends clamped, the other with both ends pinned (Fig. 2). Each beam will

be approximately 30 inches long, with a 0.250 inch of 0.300 inch cross
section; fabricated from high strength steel plate, and having a .25-

inch reflective surfacemachined to a No. 2 finish. Experiments using these
beams will commence after all tests on the cantilevered beam have been
completed.

Two preliminary dynamic tests were conducted on the cantilevered

beam to determine the effectiveness of camera equipment assembled.



FIGURE 2
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A Fastex, 16 millimeter, high speed motion camera, capable of taking
8000 pictures per second, was used together with Wollensak ""Goose"
Control Unit. The ""Goose'' control unit provides a convenient means for
synchronizing, in proper time relationships, the Fastex camera operation
and the event being photographed. It also provides a means for safely
increasing the voltage over that normally applied to the camera so that
increased camera speeds may be obtained.

For Test No. 1, the camera speed was set for an average of 5000
pictures per second. Due to focal length limitations of lenses locally
available, a distance of 60 inches between grid and cantilevered beam
was required to photograph the entire length of beam. A wide angle lens
will be obtained to enable reduction to the design distance of 40 inches or
less. After the initial exposure was taken of the beam in its neutral
position, the beam was displaced by using an electromagnet to deflect
the beam 1/2 inch and then suddenly released. The second exposure
on the same film was made while the beam was vibrating.

Since the method of obtaining Moire” fringes necessitates rewind-
ing of the film so that a double exposure of the event can be made, a
slight change in the position of the camera resulted in a relative
displacement of the images of the beam in the two exposures.

Subsequent tests with a still camera proved that the double image
of the beam could be eliminated by substituting a wider surface mirror in

place of the beam on the initial exposure, thereby simulating the grid



lines on the beam in its neutral position. The second exposure is then
taken of the vibrating beam so that only one picture of the beam itself
is taken.

Test No. 2 was conducted on a portion of the cantilevered beam on
one roll of film using the design distance of 40 inches between grid and
specimen and a camera speed of 2000 pictures per second. Another
roll of film was used to photograph the beam at a distance of 28.5 inches
with a camera speed of 1000 frames per second. The grid radius
relationship, 3.5d (d = distance between grid and specimen) was main-
tained on both sequences. Additional flood lamps were installed to
increase illumination of the grid, and the decreased camera speed also
allowed more light to penetrate through the aperture plate openings to
the film plane.

Viewing of the developed films revealed expected Moire”
patterns. Quantitative data could not be derived from these films since
only a portion of the beam was photographed in these experiments, and
definition was limited due to overexposure. However, we are confident
that with a minimal amount of additional testing to perfect the camera
settings and test procedure, quantitative results will be achieved in the

near future.
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